Abstract

Extensive experimental data and an accompanying theoretical model are presented for the self-limiting profiles and Ga segregation on patterned GaAs(111)B substrates during metalorganic vapor-phase epitaxy of Al(x)Ga(1-x)As. Self-limiting widths and segregation of Ga produce quantum dots along the base of pyramidal recesses bounded by (111)A planes and quantum wires along the vertical axis of the template, respectively. Coupled reaction-diffusion equations for precursor and adatom kinetics reproduce the measured concentration and temperature dependence of the self-limiting width and segregation. Our model can be extended to other patterned systems, providing a new paradigm for predicting the morphology of surface nanostructures and inferring their quantum optical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.