Abstract
The power transients caused by switching from drive mode to brake mode in fuel cell hybrid electric vehicles (FCHEV) can result in significant degradation cost losses to the fuel cell. To address this issue, this study proposes a self-learning Markov prediction algorithm based aging-oriented gradient drop power control strategy. First, a real-time self-learning Markov predictor (SLMP) based on the traditional offline training Markov improvement is designed to predict the demand power and combined with the sequential quadratic programming (SQP) optimization algorithm to solve for the inner optimal demand power based on its global cost function minimization characteristic. On this basis, the fuel cell gradient drop power (FGDP) strategy is proposed to optimize the operating state of the vehicle powertrain under vehicle mode switching. This involves establishing a power gradient drop step based on considering the fuel cell hydrogen consumption cost and its lifetime degradation cost to further obtain the outer fuel cell demand power at the optimal step. And three execution modes are designed to trigger the FGDP strategy. Finally, by combining the above efforts, the SLMP-FGDP optimization control strategy is constructed. The numerical verification and hardware in loop experiments results show that the proposed improved SLMP can predict the vehicle demand power more accurately. Compared with the non-FGDP system, the SLMP-FGDP strategy can effectively near-eliminate the fuel cell power transient due to any braking scenario, thus effectively controlling the fuel cell lifetime degradation cost in a lower range and realizing a reduction of up to 52.21% of the fuel cell usage costs without significantly sacrificing the hydrogen fuel economy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.