Abstract

Using low density arrays of bistable magnetic nanowires as a model dipolar system, it is shown that the dipolar interaction field coefficient can be measured from the remanence curves as well as from other functions of the isothermal remanent magnetization and the DC demagnetization remanence obtained as an affine transformation of the Wohlfarth relation. Based on mean field arguments, these measurements are used to subtract and remove the contribution of the configuration dependent dipolar interaction field from the major loop and remanence curves. The corrected remanence curves are first used to obtain the intrinsic switching field distribution of the nanowire array and then to validate this approach showing that they yield results consistent with the Wohlfarth relation for an assembly of noninteracting particles, thus providing a self-consistent procedure to verify the measured values of the interaction field and its removal from the measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call