Abstract

The first-order reversal curve (FORC) method can be used to extract information about the interaction and switching field distribution of ferromagnetic nanowire arrays, yet it remains challenging to acquire reliable values. Within ordered pores of anodic alumina templates we electrochemically synthesize eight different NixCo1−x samples with x varying between 0.05 and 1. FORC diagrams are acquired using vibrating sample magnetometry. By dissolving the template and using the magneto-optical Kerr effect, we measure the hysteresis loops of up to 100 different and isolated nanowires for each sample to gain precise information about the intrinsic switching field distribution. Values of the interaction field are extracted from a deshearing of the major hysteresis loop. We present a comparative study between all methods in order to evaluate and reinforce current FORC theory with experimental findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.