Abstract

Differential Evolution (DE) is a well known and simple population based probabilistic approach for global optimization. It has reportedly outperformed a few Evolutionary Algorithms (EAs) and other search heuristics like the Particle Swarm Optimization (PSO) when tested over both benchmark and real world problems. But, DE, like other probabilistic optimization algorithms, sometimes behave prematurely in convergence. Therefore, in order to avoid stagnation while keeping a good convergence speed for DE, two modifications are proposed: one is the introduction of a new control parameter, Cognitive Learning Factor (CLF) and the other is dynamic setting of scale factor. Both modifications are proposed in mutation process of DE. Cognitive learning is a powerful mechanism that adjust the current position of individuals by a means of some specified knowledge. The proposed strategy, named as Self Balanced Differential Evolution (SBDE), balances the exploration and exploitation capability of the DE. To prove efficiency and efficacy of SBDE, it is tested over 30 benchmark optimization problems and compared the results with the basic DE and advanced variants of DE namely, SFLSDE, OBDE and jDE. Further, a real-world optimization problem, namely, Spread Spectrum Radar Polly phase Code Design, is solved to show the wide applicability of the SBDE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.