Abstract
Differential Evolution (DE) is a well known and simple population based probabilistic approach for global optimization. It has reportedly outperformed a few Evolutionary Algorithms and other search heuristics like Particle Swarm Optimization when tested over both benchmark and real world problems. But, DE, like other probabilistic optimization algorithms, sometimes exhibits premature convergence and stagnates at suboptimal point. In order to avoid stagnation behavior while maintaining a good convergence speed, a new position update process is introduced, named fitness based position update process in DE. In the proposed strategy, position of the solutions are updated in two phases. In the first phase all the solutions update their positions using the basic DE and in the second phase, all the solutions update their positions based on their fitness. In this way, a better solution participates more times in the position update process. The position update equation is inspired from the Artificial Bee Colony algorithm. The proposed strategy is named as Fitness Based Differential Evolution ( $$FBDE$$ ). To prove efficiency and efficacy of $$FBDE$$ , it is tested over 22 benchmark optimization problems. A comparative analysis has also been carried out among proposed FBDE, basic DE, Simulated Annealing Differential Evolution and Scale Factor Local Search Differential Evolution. Further, $$FBDE$$ is also applied to solve a well known electrical engineering problem called Model Order Reduction problem for Single Input Single Output Systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.