Abstract

Gold nanomaterials have been widely explored in electrochemical sensors due to their high catalytic property and good stability in multi-medium. In this paper, the reproducibility of the signal among batches of gold nanorods (AuNRs)-modified electrodes was investigated to improve the data stabilization and repeatability. Ordered and random self-assembled AuNRs-modified electrodes were used as electrochemical sensors for the simultaneous determination of dopamine (DA) and topotecan (TPC), with the aim of obtaining an improved signal stability in batches of electrodes and realizing the simultaneous determination of both substances. The morphology and structure of the assemblies were analyzed and characterized by UV-Vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray powder diffraction (XRD). Electrochemical studies showed that the ordered AuNRs/ITO electrodes have excellent signal reproducibility among several individuals due to the homogeneous mass transfer in the ordered arrangement of the AuNRs. Under the optimized conditions, the simultaneous detection results of DA and TPC showed good linearity in the ranges 1.75-45 μM and 1.5-40 μM, and the detection limits of DA and TPC were 0.06 μM and 0.17 μM, respectively. The results showed that the prepared ordered AuNR/ITO electrode had high sensitivity, long-term stability, and reproducibility for the simultaneous determination of DA and TPC, and it was expected to be applicable for real sample testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.