Abstract
A multiwalled carbon nanotubes (MWNT) modified glassy carbon electrode (GCE) coated with poly(orthanilic acid) (PABS) film (PABS–MWNT/GCE) has been fabricated and used for simultaneous determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA) by differential pulse voltammetry (DPV). Scanning electron microscopy, Fourier transform infrared spectra, and electrochemical techniques have been used to characterize the surface morphology of the PABS–MWNT composite film and the polymerization of ABS on electrode surface. In comparison with the bare GCE and the MWNT-modified GCE, the PABS–MWNT composite film-modified GCE, which combines the advantages of MWNT and the self-doped PABS, exhibits good selectivity and sensitivity for the simultaneous and selective determination of UA and DA in the presence of AA. Due to the different electrochemical responses of AA, DA, and UA, PABS–MWNT/GCE can resolve the overlapped oxidation peak of DA and UA into two well-defined voltammetric peaks with enhanced current responses using both cyclic voltammetry (CV) and DPV. The peak potential separations between DA and UA are 170 mV using CV and 160 mV using DPV, respectively, which are large enough for the selective and simultaneous determination of these species. In the presence of 0.5 mM AA, the DPV peak currents are linearly dependent on the concentration of UA and DA in the range of 6–55 and 9–48 μM with correlation coefficients of 0.997 and 0.993, respectively. The detection limits (S/N = 3) for detecting UA and DA are 0.44 and 0.21 μM, respectively. The PABS–MWNT/GCE shows good reproducibility and stability and has been used for the simultaneous determination of DA and UA in the presence of AA in samples with satisfactory results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have