Abstract

A highly selective method is described for controlling the degradation of polyhydroxyalkanoates, PHA, via a reduction reaction that uses lithium borohydride. Using this method, oligo(hydroxyalkanoate)diols derived from a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) biopolyester [poly(3HB-co-4HB)] and from synthetic atactic poly[(R,S)-3-hydroxybutyrate] (a-PHB) were obtained. The structural characterization of the oligo(hydroxyalkanoate)diols was conducted using NMR and ESI-mass spectrometry analyses, which confirmed that oligomers that were terminated by two hydroxyl end groups were formed. The reduction of the ester groups occurred in a statistical way regardless of the chemical structure of the comonomer units or of the microstructure of the polyester chain. The presented method can be used to synthesize various PHA oligodiols that are potentially useful in the further synthesis of tailor-made biodegradable materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.