Abstract

Phase transition and mobility of poly(N-isopropylacrylamide) (PNIPA) chains with three different types of end groups (hydroxyl, carbon–carbon double bond, and camphoric sulfonic groups) have been studied by measurements of the normal 1H NMR spectrum, spin–spin relaxation time, and 2D NOESY spectrum. It is found that at room temperature not only the end group parts but also the part of the PNIPA chain with hydroxyl end group have higher mobility than corresponding parts of PNIPA with double bond and camphoric sulfonic end groups. The lower critical solution temperatures (LCST) of PNIPAs modified with hydrophilic hydroxyl and hydrophobic double bond end groups are inversely dependent and directly dependent on the molecular weight of polymer respectively, whereas the LCST of PNIPA with the camphoric sulfonic end group bearing both hydrophobic and hydrophilic structures is independent of the molecular weight. The double bond end groups collapse simultaneously with inner segments of the PNIPA chain, whereas the hydroxyl and camphoric sulfonic end groups still exhibit higher mobility and do not shrink tightly after heating-induced collapsing of inner segments. It is suggested that the hydroxyl and camphoric sulfonic end groups locate on the surface of globules, but the double bond end groups are probably buried inside the globules. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call