Abstract
A cheap and easy-to-recycle solvent, namely, aqueous NaOH with no additives, was used to dissolve cellulose and make cross-linker-free materials with varying porosity, testing them as drug delivery devices. Cellulose solutions were gelled, coagulated in a nonsolvent (water, ethanol), and dried either using supercritical CO2 (aerogels) or low-vacuum evaporation (named "xerogels"). Aerogels had densities of around 0.1 g/cm3 and specific surface areas (SSAs) of 200-400 m2/g. A significant influence of the first nonsolvent and drying mode on material properties was recorded: when the first nonsolvent was ethanol and low-vacuum drying was performed from ethanol, aerogel-like xerogels were obtained with densities of around 0.2 g/cm3 and SSAs of 200-260 m2/g. Other conditions (under evaporative drying) resulted in cellulose with much lower porosity and SSA. All materials were evaluated as drug delivery devices in simulated gastrointestinal fluids; theophylline was used as a model drug. Materials of high porosity exhibited shrinking and rapid drug release, whereas denser materials swelled and showed slower release. Two release mechanisms were suggested: diffusion through aqueous media in pores and diffusion through swollen pore walls. The results demonstrate a large spectrum of options for tuning the properties of porous cellulose materials for drug release applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.