Abstract

Electrochemical reduction of CO2 to ethylene using renewable electricity is an attractive approach for sustainable carbon recycling. In situ generation of defects in catalysts is found to be a promising method to guarantee high ethylene production from CO2 with high stability. In this study, copper nanowires are prepared in situ with a high density of defects for electrocatalytic CO2 reduction. These defects effectively improve C-C coupling, thus realizing a remarkable performance toward CO2 reduction to C2 products. The obtained copper nanowires showed a high selectivity of ∼79% for C2 products and >58% for C2H4. More importantly, a significantly wide potential window of 500 mV was realized for the selective production of C2H4 with FE(C2H4) >55%. Finally, in situ Raman spectroscopy revealed that Cu0 is the real reactive site for the electrocatalytic CO2 reduction reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.