Abstract

We present a synergistic experimental-theoretical methodology for the investigation of lanthanide-based single-molecule magnets (SMMs), demonstrated using the example of novel heterometallic molecules incorporating Nd3+/Ce3+ ions combined with three different, rarely explored, pentacyanidocobaltate(III) metalloligands, [CoIII(CN)5(azido/nitrito-N/iodido)]3-. The theoretical part of our approach broadens the exploration of ab initio calculations for lanthanide(III) complexes toward the convenient simulations of such physical characteristics as directional dependences of Helmholtz energy, magnetization, susceptibility, and their thermal and field evolution, as well as light absorption and emission bands. This work was conducted using newly designed SlothPy software (https://slothpy.org). It is introduced as an open-source Python library for simulating various physical properties from first-principles based on results of electronic structure calculations obtained within popular quantum chemistry packages. The computational results were confronted with spectroscopic and ac/dc-magnetic data, the latter analyzed using previously designed relACs software. The combination of experimental and computational methods gave insight into phonon-assisted magnetic relaxation mechanisms, disentangling them from the temperature-independent quantum tunneling of magnetization and emphasizing the role of local-mode processes. This study provides an understanding of the changes in lanthanide(III) magnetic anisotropy introduced with pentacyanidocobaltates(III) modifications, theoretically exploring also potential applications of reported compounds as anisotropy switches or optical thermometers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.