Abstract

In this report, a selective interface laser annealing (SILA) process is applied to the atomic-layer-deposited Al2O3 film/p-type silicon interface using an Nd3+: YAG laser with a wave-length of 532 nm. The absorptivity of the laser wavelength confirms a full absorption of the laser power to the Al2O3/Si interface without any loss through the Al2O3 film, which results in a successful selective annealing of the interface. Compared with conventional forming gas annealing (FGA), the SILA is found to build a thinner SiO2 interface layer and lead to a less reduction of capacitance. It is also revealed that the laser-annealed sample exhibits a surface blister density of 31 counts/mm2 which is much lower than the value of 250 counts/mm2 obtained from FGA. The suppression of the surface blister is attributed to the much shorter processing time of lasing (<60 ns) that results in reducing the interaction time between H+ and Si–H bonding and desorption of gaseous hydrogen. It is demonstrated that the ultra-short SILA processing is a promising method to enhance the interface properties of oxide/semiconductor with efficient processing time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call