Abstract

The effects of two anesthetic agents, halothane and thiopental, on the membrane potential trajectory of respiratory-related neurons in the ventral respiratory group were investigated in decerebrate cats, of which the carotid sinus and vagal afferents were denervated. Infusion of halothane (2% for 90 s) depolarized the membrane in nearly half of the inspiratory (12/21), post-inspiratory (10/26) and expiratory (4/6) neurons and caused hyperpolarization in the rest of the population. Thiopental (2.5 mg/kg i.v.) produced depolarization in 11 inspiratory and 10 post-inspiratory neurons and hyperpolarization in 1 expiratory, 4 inspiratory and 7 post-inspiratory neurons. In both hyperpolarized and depolarized neurons, reduction of the respiratory membrane potential fluctuations and an increase of input resistance were commonly observed. Both drugs depressed spontaneous firing in most of the neurons studied. An increase of firing was observed in 9 out of 47 depolarized cells. These two contrasting effects on the membrane potential trajectory occurred similarly in the known groups of respiratory neurons, but the response of a given cell was consistent for the two anesthetic agents. The present results demonstrate that the anesthetic drugs exert various influences on the ventral respiratory group neuron population in maintaining the membrane potential trajectory and discharge activity. This may reflect a functional heterogeneity in the bulbar respiratory network of neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.