Abstract
To analyse mechanisms of muscle wasting in intensive care unit patients, we developed an experimental model where rats were pharmacologically paralysed by post-synaptic block of neuromuscular transmission (NMB) and mechanically ventilated for 9+/-2 days. Specific interest was focused on the effects on protein and mRNA expression of sarcomeric proteins, i.e., myosin heavy chain (MyHC), actin, myosin-binding protein C (MyBP-C) and myosin-binding protein H (MyBP-H) in fast- and slow-twitch limb, respiratory and masticatory muscles. Muscle-specific differences were observed in response to NMB at both the protein and mRNA levels. At the protein level, a decreased MyHC-to-actin ratio was observed in all muscles excluding the diaphragm, whereas at the mRNA level a decreased expression of the dominating MyHC isoform(s) was observed in the hind limb and intercostal muscles, but not in the diaphragm and masseter muscles. MyBP-C mRNA expression was decreased in the limb muscles, but it otherwise remained unaffected. MyBP-H conversely increased in all muscles. Furthermore, we found myofibrillar protein and mRNA expression to be affected differently when comparing NMB animals with peripherally denervated (DEN) ambulatory rats. We report that NMB has both a larger and different impact on muscle, at the protein and mRNA levels, than DEN has.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have