Abstract

The distribution and discharge pattern of respiratory neurons in the ‘pneumotaxic center’ of the rostral pons in the rat has remained unknown. We performed optical recordings and whole-cell patch clamp recordings to clarify respiratory neuron activity in the rostral pons of a brainstem-spinal cord preparation from a newborn rat. Inspiratory nerve activity was recorded in the 4th cervical nerve and used as a trigger signal for optical recordings. Respiratory neuron activity was detected in the limited region of the rostral-lateral pons. The main active region was presumed to be primarily the Kölliker-Fuse nucleus. The location of respiratory neurons was further confirmed by Lucifer Yellow staining after conducting whole-cell recordings. From a membrane potential analysis of the respiratory neurons in the rostral pons, the respiratory neurons were divided into four types: inspiratory neuron (71.9%), pre-inspiratory neuron (5.3%), post-inspiratory neuron (19.3%), and expiratory neuron (3.5%). A noticeable difference between pontine and medullary respiratory neurons was that post-inspiratory neurons were more frequently encountered in the pons. Application of a μ-opioid agonist, [ d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin, transformed the burst pattern of post-inspiratory neurons into that of pre-inspiratory neurons. The electrical stimulation of the sensory root of the trigeminal nerve induced three types of responses in 85% of pontine respiratory neurons: inhibitory postsynaptic potentials (42.7%), excitatory postsynaptic potentials (37.7%) and no response (15.1%). Our findings provide the first evidence in the rat for the presence of respiratory neurons in the rostral pons, with localization in the lateral region approximately overlapping with the Kölliker-Fuse nucleus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call