Abstract

We show that capping layers of tris-(8-hydroxy-quinolinato)-aluminum Alq3 enable increased absorption and photocurrent in organic solar cells (OSCs) when using transparent metal films as top electrodes. Furthermore, by varying the capping layer thickness, the optical field in the OSC is tuned for selective wavelengths, opening a possibility of influencing the external quantum efficiency for specific absorber materials. It is described how a second maximum of the optical field intensity can be utilized, which is a concept significant for tandem solar cells. Indium tin oxide (ITO)-free OSCs are presented which show the influence of capping layer on efficiency, saturation, fill factor, and open-circuit voltage, with numerical calculations supporting the experimental evidence of layer-selective enhancement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call