Abstract

An increasing number of evidences show that genes are not distributed randomly across eukaryotic chromosomes, but rather in functional neighborhoods. Nevertheless, the driving force that originated and maintains such neighborhoods is still a matter of controversy. We present the first detailed multispecies cartography of genome regions enriched in genes with related functions and study the evolutionary implications of such clustering. Our results indicate that the chromosomes of higher eukaryotic genomes contain up to 12% of genes arranged in functional neighborhoods, with a high level of gene co-expression, which are consistently distributed in phylogenies. Unexpectedly, neighborhoods with homologous functions are formed by different (non-orthologous) genes in different species. Actually, instead of being conserved, functional neighborhoods present a higher degree of synteny breaks than the genome average. This scenario is compatible with the existence of selective pressures optimizing the coordinated transcription of blocks of functionally related genes. If these neighborhoods were broken by chromosomal rearrangements, selection would favor further rearrangements reconstructing other neighborhoods of similar function. The picture arising from this study is a dynamic genomic landscape with a high level of functional organization.

Highlights

  • Gene activity, in terms of both intensity [1] and coexpression [2,3,4,5], does not occur randomly across eukaryotic chromosomes, but in many cases it clusters in certain genomic regions

  • In order to understand the real extent of this phenomenon we have produced a detailed functional cartography of the genomes of eight eukaryotic model species: Homo sapiens, Pan troglodytes, Mus musculus, Rattus norvegicus, Gallus gallus, Danio rerio, Drosophila melanogaster, Caenorhabditis elegans, and Arabidopsis thaliana

  • When the distribution of the functional annotations of the genes is analyzed by a sliding window it becomes apparent that genomes are formed by a large amount of functional neighborhoods

Read more

Summary

Introduction

In terms of both intensity [1] and coexpression [2,3,4,5], does not occur randomly across eukaryotic chromosomes, but in many cases it clusters in certain genomic regions. In order to understand the real extent of this phenomenon we have produced a detailed functional cartography of the genomes of eight eukaryotic model species: Homo sapiens, Pan troglodytes, Mus musculus, Rattus norvegicus, Gallus gallus, Danio rerio, Drosophila melanogaster, Caenorhabditis elegans, and Arabidopsis thaliana. A sliding window (see Materials and Methods section) was moved along all chromosomes and the enrichment in Gene Ontology [20] (GO) functional terms within each window was analyzed [21]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call