Abstract
Most biologists agree that at each succeeding level of biological organization new properties appear that would not have been evident even by the most intense and careful examination of lower levels of organization. These levels might be crudely characterized as subcellular, cellular, organ, organism, population, multispecies, community, and ecosystem. The field of ecology developed because even the most meticulous study of single species could not accurately predict how several such species might interact competitively or in predator-prey interactions and the like. Moreover, interactions of biotic and abiotic materials at the level of organization called ecosystem are so complex that they could not be predicted from a detailed examination of isolated component parts. This preamble may seem platitudinous to most biologists who have heard this many times before. This makes it all the more remarkable that in the field of toxicity testing an assumption is made that responses at levels of biological organization above single species can be reliably predicted with single species toxicity tests. Unfortunately, this assumption is rarely explicitly stated and, therefore, often passes unchallenged. When the assumption is challenged, a response is that single species tests have been used for years and no adverse ecosystem or multispecies effects were noted. This could be because single species tests are overly protective when coupled with an enormous application factor or that such effects were simply not detected because there were no systematic, scientifically sound studies carried out to detect them. Probably both of these possibilities occur. However, the important factor is that no scientifically justifiable evidence exists to indicate that degree of reliability with which one may use single species tests to predict responses at higher levels of biological organization. One might speculate that the absence of such information is due to the paucity of reliable tests at higher levels of organization. This situation certainly exists but does not explain the lack of pressure to develop such tests. The most pressing need in the field of toxicity testing is not further perfection of single species tests, but rather the development of parallel tests at higher levels of organization. These need not be inordinately expensive, time consuming, or require any more skilled professionals than single species tests. Higher level tests merely require a different type of biological background. Theoretical ecologists have been notoriously reluctant to contribute to this effort, and, as a consequence, such tests must be developed by associations of professional biologists and other organizations with similar interests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.