Abstract

Global warming has become the center of worldwide environmental concerns, especially in recent years. One of the ways to deal with global warming that causes climate change is to adopt the renewable energy power technique. Different renewable energy sources such as solar, wind, hydro, ocean, geothermal, and bioenergy are currently the backbone of green and sustainable economic growth. However, renewable energy sites are directly or indirectly dependent on environmental, social, and technical criteria.The main objective of this paper is to identify potential best renewable energy site alternatives using the maximum entropy model (MaxEnt) and Geographical Information systems (GIS). Thus, the framework formed by the findings will guide investors in the renewable energy sector. The results showed that suitable areas for solar and wind were mainly located in the Hatay and Mersin of the Eastern Mediterranean Region in Turkey. The energy suitability site maps indicate that 8% (3.42km2) and 3.39% (1554km2) of the total study area have suitability and very suitability for solar and wind energy respectively. Moreover, it is seen that 44.82% (20,689km2) of the regions are the same when suitable and very suitable regions are overlaid for the installation of solar and wind energy sites. The receiver operating characteristic (ROC) curve was used to evaluate model performance. The area under the curve (AUC) values are calculated 0.87 and 0.95 for solar and wind energy, respectively. Relying on realistic data, this paper proposes an innovative method to identify suitable areas for solar and wind power plants. The maps obtained to contribute to renewable energy production will be useful for creating future strategies in the Mediterranean region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.