Abstract
Freezing of gait (FOG) is a major hindrance to daily mobility and can lead to falling in people with Parkinson's disease. While wearable accelerometers and gyroscopes have been commonly used for FOG detection, foot plantar pressure distribution could also be considered for this application, given its usefulness in previous gait-based classification. This research examined 325 plantar-pressure based features and 132 acceleration-based features extracted from the walking data of five males with Parkinson's disease who experienced FOG. A set of 61 features calculated from the time domain, Fast Fourier transform (FFT), and wavelet transform (WT) were extracted from multiple input signals; including, total ground reaction force, foot centre of pressure (COP) position, COP velocity, COP acceleration, and 3D ankle acceleration. Minimum-redundancy maximum relevance (mRMR) feature selection was used to rank all features. Plantar-pressure based features accounted for 4 of the top 5 features (ranks 2, 3, 4, 5); the remaining feature was an ankle acceleration based feature (rank 1). The three highest ranked features were the freeze index (calculated from ankle acceleration), total power in the frequency domain (calculated using the FFT from COP velocity), and mean of the WT detail coefficients (calculated from COP velocity). This preliminary analysis demonstrated that features calculated from plantar pressure, specifically COP velocity, performed comparably to ankle acceleration features. Thus, feature sets for FOG detection may benefit from plantar-pressure based features.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have