Abstract
A methodology for the evaluation of the annual probability of occurrence of post-elastic seismic damage in realistic structures is presented. The seismic damage hazard analysis (SDHA) is carried out here by coupling conventional seismic hazard analysis (SHA) for the site and the structural response to earthquakes of different intensities. The structural performance is statistically investigated by conducting appropriate non-linear dynamic analyses for a limited set of real ground-motion records that might potentially pose a threat to the structure at the site. The merging of these two approaches permits calculation of the seismic hazard faced by the structure in direct damage terms. The methodology is presented in this paper with the aid of a simple illustrative case study where the annual probability of damage and, eventually, failure of a power house steel structure is computed. This methodology can find practical applications in seismic retrofit of nuclear power plant structures and in the evaluation of seismic damage hazards in new structure designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.