Abstract

The segregation, thermodynamic, and structural properties of [001] twist boundaries in CuNi alloys have been examined within a wide range of misorientations and temperatures. Cu always segregates to the boundary. The concentration of the first layer adjacent to the boundary increases monotonically with misorientation and no obvious cusps are observed. All other thermodynamic properties vary smoothly with the misorientation, with the exception of the vibrational entropy of the boundaries without segregation. The unsegregated vibrational entropy shows a large peak at the misorientation corresponding to the Σ17 boundary and two minima around the Σ13 and Σ5 boundary orientations. The concentration distribution within the plane of the grain boundaries can be described by the same structural unit model established for [001] twist boundaries in pure materials. Regions of large tensile stress show greater segregation than do regions of compressive stress. Regions of large shear stress tend to show reduced segragation compared with regions of small shear stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.