Abstract

Nucleation and bluntness of nanocracks were studied through in situ tensile tests for thin crystals of 310 stainless steel by transmission electron microscopy (TEM). A dislocation free zone (DFZ) could form after the dislocation emission had just ceased. The DFZ is an elastic zone so that the local stress near the crack tip in the DFZ is possibly up to the cohesive strength, because of which a nanocrack could initiate in the DFZ or at the crack tip. The nanocrack in the DFZ or at the crack tip would blunt into a void or a notch through the increment and movement of dislocations in the plastic zone even when keeping constant displacement. If constant displacement was kept for a long time, nanovoids could initiate in the DFZ through diffusion and enrichment of supersaturation vacancies. The connection of the nanovoids would result in the initiation of nanocracks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call