Abstract

Melanoma is one of the most dangerous skin cancers. The current melanoma segmentation is mainly based on FCNs (fully connected networks) and U-Net. Nevertheless, these two kinds of neural networks are prone to parameter redundancy, and the gradient of neural networks disappears that occurs when the neural network backpropagates as the neural network gets deeper, which will reduce the Jaccard index of the skin lesion image segmentation model. To solve the above problems and improve the survival rate of melanoma patients, an improved skin lesion segmentation model based on deformable 3D convolution and ResU-NeXt++ (D3DC- ResU-NeXt++) is proposed in this paper. The new modules in D3DC-ResU-NeXt++ can replace ordinary modules in the existing 2D convolutional neural networks (CNNs) that can be trained efficiently through standard backpropagation with high segmentation accuracy. In particular, we introduce a new data preprocessing method with dilation, crop operation, resizing, and hair removal (DCRH), which improves the Jaccard index of skin lesion image segmentation. Because rectified Adam (RAdam) does not easily fall into a local optimal solution and can converge quickly in segmentation model training, we also introduce RAdam as the training optimizer. The experiments show that our model has excellent performance on the segmentation of the ISIC2018 Task I dataset, and the Jaccard index achieves 86.84%. The proposed method improves the Jaccard index of segmentation of skin lesion images and can also assist dermatological doctors in determining and diagnosing the types of skin lesions and the boundary between lesions and normal skin, so as to improve the survival rate of skin cancer patients. Overview of the proposed model. An improved skin lesion segmentation model based on deformable 3D convolution and ResU-NeXt++ (D3DC- ResU-NeXt++) is proposed in this paper. D3DC-ResU-NeXt++ has strong spatial geometry processing capabilities, it is used to segment the skin lesion sample image; DCRH and transfer learning are used to preprocess the data set and D3DC-ResU-NeXt++ respectively, which can highlight the difference between the lesion area and the normal skin, and enhance the segmentation efficiency and robustness of the neural network; RAdam is used to speed up the convergence speed of neural network and improve the efficiency of segmentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call