Abstract

The segmentation of airway from computed tomography (CT) images plays a vital role in pulmonary disease diagnosis, evaluation, surgical planning, and treatment. Nevertheless, it is still challenging for current methods to handle distal thin and low-contrast airways, leading to mis-segmentation issues. This paper proposes a detail-sensitive 3D-UNet (DS-3D-UNet) that incorporates two new modules into 3D-UNet to segment airways accurately from CT images. The feature recalibration module is designed to give more attention to the foreground airway features through a new attention mechanism. The detail extractor module aims to restore multi-scale detailed features by fusion of features at different levels. Extensive experiments were conducted on the ATM'22 challenge dataset composed of 300 CT scans with airway annotations to evaluate its performance. Quantitative comparisons prove that the proposed model achieves the best performance in terms of Dice similarity coefficient (92.6%) and Intersection over Union (86.3%), outperforming other state-of-the-art methods. Qualitative comparisons further exhibit the superior performance of our method in segmenting thin and confused distal bronchi. The proposed model could provide important references for the diagnosis and treatment of pulmonary diseases, holding promising prospects in the field of digital medicine. Codes are available at https://github.com/nighlevil/DS-3D-UNet/tree/master .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.