Abstract

The fight against cancer, a relentless global health crisis, emphasizes the urgency for efficient and automated early detection methods. To address this critical need, this review assesses recent advances in non-invasive cancer prediction techniques, comparing conventional machine learning (CML) and deep neural networks (DNNs). Focusing on these seven major cancers, we analyze 310 publications spanning the years 2018 to 2024, focusing on detection accuracy as the key metric to identify the most effective predictive models, highlighting critical gaps in current methodologies, and suggesting directions for future research. We further delved into factors like datasets, features, and modalities to gain a comprehensive understanding of each approach's performance. Separate review tables for each cancer type and approach facilitated comparisons between top performers (accuracy exceeding 99%) and low performers (65.83 to 85.8%). Our exploration of public databases and commonly used classifiers revealed that optimal combinations of features, datasets, and models can achieve up to 100% accuracy for both CML and DNN. However, significant variations in accuracy (up to 35%) were observed, particularly when optimization was lacking. Notably, colorectal cancer exhibited the lowest accuracy (DNN 69%, CML 65.83%). A five-point comparative analysis (best/worst models, performance gap, average accuracy, and research trends) revealed that while DNN research is gaining momentum, CML approaches remain competitive, even outperforming DNN in some cases. This study presents an in-depth comparative analysis of CML and DNN techniques for cancer detection. This knowledge can inform future research directions and contribute to the development of increasingly accurate and reliable cancer detection tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.