Abstract
ABSTRACT The brain is a crucial organ that controls the body’s neural system. The tumor develops and spreads across the brain as a result of irregular cell generation. The provision of substantial treatment to patients requires the early diagnosis of malignancies. However, timely diagnosis and accurate classification were difficult in the conventional models. Thus, the Taylor Fire Hawk optimization (TFHO) is implemented here for effective segmentation and classification. The TFHO is the merging of the Taylor series and Fire Hawk Optimizer (FHO). The de-noising is accomplished by the adaptive median filter, and the segmentation is carried out using M-Net, which has been trained by TFHO. Subsequently, image augmentation is performed to increase the image dimension, followed by the extraction of effective features. Finally, DenseNet is used for the classification, and the training is done by TFHO. The introduced method obtained 94.86% accuracy, 92.83% Negative Predictive Values, 89.33% Positive Predictive Values (PPV), 95.91% True Positive Rate (TPR), 4.37% False Negative Rate (FNR), and 90.98% F1-score.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.