Abstract

Segmentation and classification of brain tumor are time-consuming and challenging chore in clinical image processing. Magnetic Resonance Imaging (MRI) offers more information related to human soft tissues that assists in diagnosing brain tumor. Precise segmentation of the MRI images is vital to diagnose brain tumor by means of computer-aided medical tools. Afterwards suitable segmentation of MRI brain tumor images, tumor classification is performed that is a hard chore owing to complications. Therefore, Gannet Aquila Optimization Algorithm_deep maxout network (GAOA_DMN) and GAOA_K-Net+speech enhancement generative adversarial network (GAOA_K-Net+Segan) is presented for classification and segmentation of brain tumor utilizing MRI images. Here, pre-processing phase performs noise removal from input image utilizing the Laplacian filter and also the region of interest (ROI) extraction is also carried out. Then, segmentation of brain tumor is conducted by K-Net+Segan, which is combined by Motyka similarity. However, K-Net+Segan for segmentation is trained by GAOA that is an amalgamation of Gannet Optimization Algorithm (GOA) and Aquila Optimizer (AO). From segmented image, features are extracted for performing classification phase. At last, brain tumor classification is conducted by DMN, which is tuned by GAOA and thus, output is obtained. Furthermore, GAOA_K-Net+Segan obtained better outcomes in terms of segmentation accuracy whereas devised GAOA_DMN achieved maximum accuracy, true negative rate (TNR) and true positive rate (TPR) of 92.7%, 94.5% and 91.5%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.