Abstract

The large variation in seed mass among species inspired a vast array of theoretical and empirical research attempting to explain this variation. So far, seed mass variation was investigated by two classes of studies. One class focuses on species varying in seed mass within communities, while the second focuses on variation between communities, most often with respect to resource gradients. Here, we develop a model capable of simultaneously explaining variation in seed mass within and between communities. The model describes resource competition (for both soil and light resources) in annual communities and incorporates two fundamental aspects: light asymmetry (higher light acquisition per unit biomass for larger individuals) and growth allometry (negative dependency of relative growth rate on plant biomass). Results show that both factors are critical in determining patterns of seed mass variation. In general, growth allometry increases the reproductive success of small-seeded species while light asymmetry increases the reproductive success of large-seeded species. Increasing availability of soil resources increases light competition, thereby increasing the reproductive success of large-seeded species and ultimately the community (weighted) mean seed mass. An unexpected prediction of the model is that maximum variation in community seed mass (a measure of functional diversity) occurs under intermediate levels of soil resources. Extensions of the model incorporating size-dependent seed survival and disturbance also show patterns consistent with empirical observations. These overall results suggest that the mechanisms captured by the model are important in determining patterns of species and functional diversity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.