Abstract

The simple preparation of efficient nano-photoanodes has been a key issue in the development of photoelectrochemical water splitting. In this work, a convenient and seed layer-free hydrothermal approach has been developed to synthesize vertically aligned porous WO3 nanoflakes on a fluorine-doped tin oxide conductive glass substrate. The morphology of WO3 nanoflakes could be manipulated by changing the annealing time, which further affected the performance of WO3 nanoflakes as photoanodes. Under optimum conditions, the obtained photoanode can lead to a high photocurrent density of 2.34 mA cm−2 at 1.4 V vs. Ag/AgCl under one sun irradiation (100 mW cm−2) and an incident photon to current conversion efficiency of 60% at 300 nm. The excellent photoelectrochemical performance can be mainly attributed to the larger active surface area, single crystal structure with an optimum thickness and the exposed highly active facets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.