Abstract

AbstractSluggish oxygen evolution kinetics are one of the key limitations of bismuth vanadate (BiVO4) photoanodes for efficient photoelectrochemical (PEC) water splitting. To address this issue, we report a vanadium oxide (VOx) with enriched oxygen vacancies conformally grown on BiVO4photoanodes by a simple photo‐assisted electrodeposition process. The optimized BiVO4/VOxphotoanode exhibits a photocurrent density of 6.29 mA cm−2at 1.23 V versus the reversible hydrogen electrode under AM 1.5 G illumination, which is ca. 385 % as high as that of its pristine counterpart. A high charge‐transfer efficiency of 96 % is achieved and stable PEC water splitting is realized, with a photocurrent retention rate of 88.3 % upon 40 h of testing. The excellent PEC performance is attributed to the presence of oxygen vacancies in VOxthat forms undercoordinated sites, which strengthen the adsorption of water molecules onto the active sites and promote charge transfer during the oxygen evolution reaction. This work demonstrates the potential of vanadium‐based catalysts for PEC water oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call