Abstract

For modern and future circular accelerators, especially high-intensity proton synchrotrons or colliders, the electron cloud effect is a key issue. So, in order to reduce the electron cloud effect, exploring very low secondary electron yield (SEY) material or coating used in vacuum tubes becomes necessary. In this article, we studied the SEY characteristics of graphene films with different thicknesses which were deposited on copper substrates using chemical vapor deposition. The SEY tests were done at temperatures of 25 °C and vacuum pressure of (2 − 6) × 10−9 torr. The properties of the deposited graphene films were investigated by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The SEY curves show that the number of graphene layers has a great effect on the SEY of graphene films. The maximum SEY of graphene films decreases with the increase of the number of layers. The maximum SEY of 6–8 layers of graphene film is 1.25. These results have a great significance for next-generation particle accelerators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call