Abstract
Abstract Tsallis nonextensive statistics is applied to study the transport coefficients of strongly interacting matter within the Polyakov chiral SU(3) quark mean field model (PCQMF). Nonextensivity is introduced within the PCQMF model through a dimensionless $q$ parameter to examine the viscous properties such as shear viscosity ($\eta$), bulk viscosity ($\zeta_b$), and conductive properties, including electrical conductivity ($\sigma_{el}$) and thermal conductivity ($\kappa$). Additionally, some key thermodynamic quantities relevant to the transport coefficients, like the speed of sound ($c_{sq}^2$) and specific heat at constant volume ($c_{vq}$), are calculated. The temperature dependence of the transport coefficients is explored through a kinetic theory approach with the relaxation time approximation. The results are compared to the extensive case where $q$ approaches 1. The nonextensive $q$ parameter is found to have a significant effect on all transport coefficients. We find that the nonextensive behaviour of the medium enhances both specific shear viscosity $\eta/s_q$ as well as conductive coefficients $\sigma_{el}/T$ and $\kappa/T^2$. In contrast, the normalised bulk viscosity $\zeta_b/s_q$ is found to decrease as the nonextensivity of the medium increases. We have also studied the transport coefficients for finite values of chemical potentials. The magnitude of $\eta$, $\sigma_{el}$, and $\kappa$ increases at lower temperatures while $\zeta$ is found to decrease for systems with non-zero chemical potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.