Abstract

Experimental investigation of hypersonic boundary layer instability on a cone is performed at Mach number 6 in a hypersonic wind tunnel. Time series signals of instantaneous fluctuating surface-thermal-flux are measured by Pt-thin-film thermocouple temperature sensors mounted at 28 stations on the cone surface in the streamwise direction to investigate the development of the unstable disturbance. Wavelet transform is employed as a mathematical tool to obtain the multi-scale characteristics of fluctuating surface-thermal-flux both in the temporal and spectrum space. The conditional sampling algorithm using wavelet coefficient as an index is put forward to extract the unstable disturbance waveform from the fluctuating surface-thermal-flux signals. The generic waveform for the second mode unstable disturbance is obtained by a phase-averaging technique. The development of the unstable disturbance in the streamwise direction is assessed both in the temporal and spectrum space. Our study shows that the local unstable disturbance detection method based on wavelet transformation offers an alternative powerful tool in studying the hypersonic unstable mode of laminar-turbulent transition. It is demonstrated that, at hypersonic speeds, the dominant flow instability is the second mode, which governs the course of laminar-turbulent transition of sharp cone boundary layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.