Abstract

Coastal salinity typically alters the soil microbial communities, which subsequently affect the biogeochemical cycle of nutrients in the soil. The seasonal variation of the soil fungal communities in the coastal area, closely associated with plant population, is poorly understood. This study provides an insight into the fungal community's variations from autumn to winter and spring to summer at a well-populated area of salt-tolerant Tamarix chinensis and beach. The richness and diversity of fungal community were higher in the spring season and lower in the winter season, as showed by high throughput sequencing of the 18S rRNA gene. Ascomycota was the predominant phylum reported in all samples across the region, and higher difference was reported at order level across the seasonal variations. The redundancy analysis suggested that the abundance and diversity of fungal communities in different seasons are mainly correlated to total organic carbon and total nitrogen. Additionally, the saprotrophic and pathotrophic fungi decreased while symbiotic fungi increased in the autumn season. This study provides a pattern of seasonal variation in fungal community composition that further broadens our limited understanding of how the density of the salt-tolerant T. chinensis population of the coastal saline soil could respond to their seasonal variations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call