Abstract

An electrochemical sensor composed of conductive metal-organic framework [Ni3(HITP)2] and molecular imprinted polymers (MIP) is fabricated to detect dopamine. Ni3(HITP)2 promotes electrons transfer due to the structure of in-plane charge delocalization and layered expansion conjugation. The combination of MIP with Ni3(HITP)2 improves the selectivity and conductivity, exhibiting a wide detection range (0.06 ~ 200µM) and a low detection limit (0.109µM). The kinetic mechanism on the electrode surface is an adsorption controlled process, with the equal number of electrons and protons participating in oxidation in the electrocatalytic process of catechol converting to o-quinone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.