Abstract

Two molecularly imprinted polymers (MIPs), in the physical form of well-defined polymer microspheres, were synthesised via precipitation polymerisation (PP) using an antiepileptic drug, carbamazepine (CBZ), as template molecule, methacrylic acid as functional monomer and either divinylbenzene 80 (DVB-80) or a mixture of DVB-80 and ethylene glycol dimethacrylate (EGDMA) as crosslinking agents. The MIP obtained using DVB-80 alone as crosslinking agent (MIP A) had a narrow particle size distribution (9.5 ± 0.5 μm) and a well-developed permanent pore structure (specific surface area in the dry state = 758 m 2 g −1), whereas when a mixture of DVB-80 and EGDMA (MIP B) were used as crosslinking agents, the polymer obtained had a broader particle size distribution (6.4 ± 1.8 μm) and a relatively low specific surface area (23 m 2 g −1). The molecular recognition character of both polymers was evaluated by means of LC and then a molecularly imprinted solid-phase extraction (MISPE) protocol; CBZ was recognised by both polymers, and useful cross-selectivity for oxcarbazepine (OCBZ), which is the main metabolite of CBZ, also observed. In a detailed bioanalytical study, MIP A was selected in preference to MIP B since MIP A enabled a high volume of sample to be extracted such that lower limits of detection were achievable using this polymer. High recoveries of CBZ and OCBZ were obtained in a MISPE protocol when 50 mL of human urine spiked at 0.2 mg L −1 were percolated through MIP A (90% and 83%, respectively).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call