Abstract

Avermectin, an agricultural antibiotic, is widely used as an agricultural insecticide and an important lead compound of antibiotics. It is manufactured by Streptomyces avermitilis through fermentation. Manufacturers pay special attention to screening for strains with high fermentation capacity based on morphological properties of the colony and by the result of shake flask fermentation. These traditional screening methods are time-consuming and labor-intensive and require specialized equipment. Moreover, evaluation of colony appearance is highly subjective. To improve and accelerate the screening process, we developed a rapid in situ screening method. Forty-four strains isolated naturally from the spores of industrial high-yielding strains were studied. The data show that the colony fermentation titer is highly correlated with the yield from the shake flask fermentation of avermectin, and the Pearson's R is 0.990. The total titer of avermectins by shake flask fermentation is also highly correlated with the B1a titer (Pearson's R is 0.994). This result also shows that strains can be quickly screened by analyzing the colony titer. Pigment rings of the colonies that appeared after growing and maturing on the new medium plate were analyzed. The chosen colonies were directly marked and punched and then extracted with methanol. The fermentation ability can be evaluated by measuring the absorbance at 245nm. This methodology can be applied in both natural breeding and mutation breeding conditions. By continuously breeding from 2008 to 2020, the flask titer of avermectin B1a increased from 4582 ± 483 to 9197 ± 1134μg/mL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call