Abstract
Fouling release coatings (FRCs) can become damaged and diminished over exposure. Quantifying adverse effect of scratches on FRCs is crucial for damage control. This study investigated the effect of four pre-defined scratches on the re-fouling of a silicone-based FRC (SiFR) undergoing underwater cleaning utilizing a novel automated underwater cleaning system (AUCS). Moreover, barnacle adhesion and coating detachment formation of scratched SiFR were evaluated. Field testing at the CoaST Maritime Test Centre (CMTC) demonstrated that the scratches varying in depths and widths can significantly affect the biofouling behavior and cleaning efficiency of SiFR surface. For wide scratches (i.e. 3-mm-wide), hard fouling (e.g. barnacles, mussels) was more prone to accumulate, and underwater cleaning was effective in preventing hard fouling but not soft fouling on SiFR surface. Additionally, the re-fouling and cleaning difficulty of hard fouling increased with the depth of wide scratches. For narrow scratches (i.e. ˂50-μm-wide), SiFR was primarily attached by soft fouling (e.g. biofilm, algae), and underwater cleaning performed positive fouling resistance of algae but not biofilm on SiFR surface. Besides, algae became difficult to remove with the depth of narrow scratches. Notably, biweekly cleaning proved to be highly effective in biofouling control of SiFR with narrow and shallow scratches.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have