Abstract
The Schizosaccharomyces pombe Rad32 protein is required for repair of DNA double strand breaks, minichromosome stability and meiotic recombination. We show here that the Rad32 protein is phosphorylated in a cell cycle-dependent manner and during meiosis. The phosphorylation is not dependent on the checkpoint protein Rad3. Analysis of a partially purified protein preparation indicates that Rad32 is likely to act in a complex. Characterisation of the rad32-1 mutation and site-directed mutagenesis indicate that three aspartate residues in the conserved phosphoesterase motifs are important for both mitotic and meiotic functions, namely response to UV and ionising radiation and spore viability.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have