Abstract

An essential feature of meiosis is interhomolog recombination whereby a significant fraction of the programmed meiotic double-strand breaks (DSBs) is repaired using an intact homologous non-sister chromatid rather than a sister. Involvement of Mec1 and Tel1, the budding yeast homologs of the mammalian ATR and ATM kinases, in meiotic interhomlog bias has been implicated, but the mechanism remains elusive. Here, we demonstrate that Mec1 and Tel1 promote meiotic interhomolog recombination by targeting the axial element protein Hop1. Without Mec1/Tel1 phosphorylation of Hop1, meiotic DSBs are rapidly repaired via a Dmc1-independent intersister repair pathway, resulting in diminished interhomolog crossing-over leading to spore lethality. We find that Mec1/Tel1-mediated phosphorylation of Hop1 is required for activation of Mek1, a meiotic paralogue of the DNA-damage effector kinase, Rad53p/CHK2. Thus, Hop1 is a meiosis-specific adaptor protein of the Mec1/Tel1 signaling pathway that ensures interhomolog recombination by preventing Dmc1-independent repair of meiotic DSBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.