Abstract

This paper deals with an identical parallel machines scheduling problem, where independent jobs can be preempted and transported from one machine to another. The transportation of a preempted job requires a time called the transportation delay. The goal is to find a solution that minimizes the total completion time (makespan). We first study the case of equal-size jobs where new complexity results are given. Then, to solve the problem with two identical machines, we present a dynamic programming algorithm and a fully polynomial time approximation scheme (FPTAS). Experimental results show the efficiency of the FPTAS compared to a previously published heuristic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.