Abstract
A radiative transfer model of water wave scattering in the marginal ice zone is considered. In this context, wave energy redistribution across the directional components of the spectrum as a result of scattering by the constituent ice floes is typically modelled via a scattering kernel describing the far-field directionality of the scattered wave field produced by a single floe in isolation. Recognizing the potential importance of the floe size distribution (FSD) on wave scattering, we propose an enhanced scattering kernel constructed from the far-field scattering pattern of a circular array of floes. This is achieved by solving the self-consistent multiple scattering of a time-harmonic plane wave by a large array of floating circular floes with radii sampled from a prescribed FSD. A fast multipole method is implemented to accelerate the numerical estimation of the solution. Simulations are then conducted to characterize the properties of the scattering kernel for a range of configurations. It is found that the scattering kernel obtained for a wide array has a large, narrow transmission peak in the forward direction, while it uniformizes low-amplitude scattered waves in other directions. An idealized application to radiative transfer theory is also considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.