Abstract

A radiative transfer model of water wave scattering in the marginal ice zone is considered. In this context, wave energy redistribution across the directional components of the spectrum as a result of scattering by the constituent ice floes is typically modelled via a scattering kernel describing the far-field directionality of the scattered wave field produced by a single floe in isolation. Recognizing the potential importance of the floe size distribution (FSD) on wave scattering, we propose an enhanced scattering kernel constructed from the far-field scattering pattern of a circular array of floes. This is achieved by solving the self-consistent multiple scattering of a time-harmonic plane wave by a large array of floating circular floes with radii sampled from a prescribed FSD. A fast multipole method is implemented to accelerate the numerical estimation of the solution. Simulations are then conducted to characterize the properties of the scattering kernel for a range of configurations. It is found that the scattering kernel obtained for a wide array has a large, narrow transmission peak in the forward direction, while it uniformizes low-amplitude scattered waves in other directions. An idealized application to radiative transfer theory is also considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call