Abstract
The propagation of signalling molecules within cellular networks is affected not only by network topology, but also by the spatial arrangement of cells in the networks. Understanding the collective reaction–diffusion behaviour in space of signals propagating through cellular networks is an important consideration, for example, for regenerative signals that convey positional information. In this work, we consider stochastic and deterministic versions of random walk models of signalling molecules propagating and reacting within one-dimensional spatial networks with arbitrary node placement and connectivity. By taking a continuum limit of the random walk models, we derive an inhomogeneous reaction–diffusion–advection equation, where diffusivity and advective velocity depend on local node density and connectivity within the network. Our results show that large spatial variations of molecule concentrations can be induced by heterogeneous node distributions. Furthermore, we find that noise within the stochastic random walk model is directly influenced by node density. We apply our models to consider signal propagation within the osteocyte network of bone, where signals propagating to the bone surface regulate bone formation and resorption processes. We investigate signal-to-noise ratios for different damage detection scenarios and show that the location of perturbations to the network can be detected by signals received at the network boundaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.