Abstract

AbstractTo better describe the state of sea ice in the marginal ice zone (MIZ) with floes of varying thicknesses and sizes, both an ice thickness distribution (ITD) and a floe size distribution (FSD) are needed. In this work, we have developed a FSD theory that is coupled to the ITD theory of Thorndike et al. (1975) in order to explicitly simulate the evolution of FSD and ITD jointly. The FSD theory includes a FSD function and a FSD conservation equation in parallel with the ITD equation. The FSD equation takes into account changes in FSD due to ice advection, thermodynamic growth, and lateral melting. It also includes changes in FSD because of mechanical redistribution of floe size due to ice ridging and, particularly, ice fragmentation induced by stochastic ocean surface waves. The floe size redistribution due to ice fragmentation is based on the assumption that wave‐induced breakup is a random process such that when an ice floe is broken, floes of any smaller sizes have an equal opportunity to form, without being either favored or excluded. To focus only on the properties of mechanical floe size redistribution, the FSD theory is implemented in a simplified ITD and FSD sea ice model for idealized numerical experiments. Model results show that the simulated cumulative floe number distribution (CFND) follows a power law as observed by satellites and airborne surveys. The simulated values of the exponent of the power law, with varying levels of ice breakups, are also in the range of the observations. It is found that floe size redistribution and the resulting FSD and mean floe size do not depend on how floe size categories are partitioned over a given floe size range. The ability to explicitly simulate multicategory FSD and ITD together may help to incorporate additional model physics, such as FSD‐dependent ice mechanics, surface exchange of heat, mass, and momentum, and wave‐ice interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call