Abstract
Single machine scheduling problems have many real-life applications and may be hard to solve due to the particular characteristics of some production environments. In this paper, we tackle the single machine scheduling problem with sequence-dependent setup times with the objective of minimizing the weighted tardiness. To solve this problem, we propose a scatter search algorithm which uses path relinking in its core. This algorithm is enhanced with some procedures to speed-up the neighbors' evaluation and with some diversification and intensification techniques, the latter taking some elements from iterated local search. We conducted an experimental study across a well-known set of instances to analyze the contribution of each component to the overall performance of the algorithm, as well as to compare our proposal with the state-of-the-art metaheuristics, obtaining competitive results. We also propose a new benchmark with larger and more challenging instances and provide the first results for them.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have