Abstract

Controlled dual mode scanning tunneling microscopy (STM) experiments and first-principles simulations show that the tunneling conditions can significantly alter the positive-bias topographic contrast of geometrically corrugated titania surfaces such as rutile TiO2(011)-(2×1). Depending on the tip-surface distance, two different contrasts can be reversibly imaged. STM simulations which either include or neglect the tip-electronic structure, carried out at three density functional theory levels of increasing accuracy, allow assignment of both contrasts on the basis of the TiO2(011)-(2×1) structure proposed by Torrelles et al. [Phys. Rev. Lett. 101, 185501 (2008)]. Finally, the mechanisms of contrast formation are elucidated in terms of the subtle balance between the surface geometry and the different vacuum decay lengths of the topmost Ti(3d) and O(2p) states probed by the STM-tip apex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.