Abstract

We compare computer simulations to experimental scanning tunneling microscopy (STM) images of chloronitrobenzene molecules on a Cu(111) surface. The experiments show that adsorption induced isomerization of the molecules takes place on the surface. Furthermore, not only the submolecular features can be seen in the STM images, but different isomers can also be recognized. The Todorov-Pendry approach to tunneling produces simulated STM images which are in good accordance with the experiments. Alongside with STM simulations in a tight-binding basis, ab initio calculations are performed in order to analyze the symmetry of relevant molecular orbitals and to consider the nature of tunneling channels. Our calculations show that while the orbitals delocalized to the phenyl ring create a relatively transparent tunneling channel, they also almost isolate the orbitals of the substitute groups at energies which are relevant in STM experiments. These features of the electronic structure are the key ingredients of the accurate submolecular observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.